
Versioned Pointers in Tux3

Stefan Rijkers
Student number: 0553334

s.rijkers@student.tue.nl

Mohammed El-Kebir
Student number: 0554141

m.el-kebir@student.tue.nl

Martin Harwig
Student number: 0548455

m.p.harwig@student.tue.nl

April 11, 2009

1

Contents

1 Introduction 3

2 Preliminaries 3

3 Versioned pointers 4

3.1 Create snapshot of origin . 6

3.2 Create snapshot of snapshot . 6

3.3 Read from snapshot . 6

3.4 Delete snapshot . 7

3.5 Write to snapshot . 9

3.6 Write to origin . 10

4 Discussion and Conclusion 11

2

1 Introduction

Tux3 is a B-tree based versioning file system. Versioning takes place in three places: in the
atime btree, extents in a file data btree and attributes in the inode table. This is achieved
by using a method invented by Philips called versioned pointers. In this report this method
is described in a formal way. For every operation the pseudo code is given, together with the
running time analysis. Note that the description and the definitions are our own work. For
every operation we try to be as precise and correct as possible.

2 Preliminaries

Snapshots are used often in industry as an efficient way of backing up data. A snapshot creates
a copy of the volume data at a particular point in time. A full back-up is time consuming as
the whole data must be copied. On the other hand a snapshot copy can be done instantly; so
the original data continues to be available without interruption. Also, the data in snapshot
is made available for future access [Gar06]. There are two common implementations of the
creation of snapshots:

1. Copy-on-write
When a snapshot is created only the meta-data about where the snapshot is stored is
copied. As soon as a write occurs on the original data, the data being written to is
copied to the snapshot store and the pointer in the snapshot is updated. Afterwards
the initial write action is performed.

2. Redirect-on-wite
Similarly to the previous method only the meta-data is copied upon snapshot creation.
This time, however, upon a write operation the address written to is redirected to some
free space. Subsequently the pointer in the current version is redirected to the address
of the newly allocated free space. So in comparison with the previous method one write
is saved.

The main contribution of versioned pointers is to support the operations on snapshots more
efficiently.

Formally, a snapshot is a version of the volume data. The origin is the ‘head revision’ of the
volume data. At any time a snapshot can be taken from the origin. A snapshot is identified
via a snapshot tag. Via this id the snapshot can be accessed and operated upon.

The volume data is divided in chunks. Two types of chunks can be distinguished, namely
orgin chunks and snapshot chunks. As the name suggests, origin chunks are part of the
origin. Snapshot chunks do not occur in the origin. In an efficient implementation of a
snapshot facility, identical chunks are shared among different snapshots. That’s why chunks
have two types of addresses. The physical location of a chunk on the volume disk is given by
the physical address of that chunk. In a snapshot, however, logical addresses are used. Every
snapshot has the same set of logical addresses.

The way reuse of chunks used to be supported is by storing the mapping in a B-tree indexed
by the logical chunk address. For each logical chunk address a list of exceptions of that chunk

3

is stored. Each exception is a pair of a physical address and a bitmap indicating which other
snapshots share the same chunk [Phi07].

Philips stores the mapping in a different way: he suggests to base the mapping on snapshots
instead of logical addresses, inspired by revision control systems. Furthermore Philips allows
snapshot to be writable. Read-write snapshots are frequently used in virtualization, sand-
boxing and virtual hosting setups because of their usefulness in managing changes to large
sets of files [Wik09].

3 Versioned pointers

The reason Philips calls this method versioned pointers is because in a sense logical addresses
are pointers. Across different snapshots the same logical address may point to a different
chunk, hence the name.

Versioning information is stored in a version tree. The origin corresponds to the root of the
version tree. On the other hand, regular snapshots correspond to the non-root nodes of this
tree. Changing the origin results in a new root being created, and thus the old root becoming
a regular snapshot. Whereas modifying a regular snapshot node v, results in a new node being
created with as parent v. Later on we will see that a node does not necessarily correspond
to a snapshot. Therefore new ids are needed: every node in the version tree is identified by
a version label.

In order to accommodate reuse of chunks, an exception list L[l] = {(v1, p1), . . . , (vk, pk)} is
maintained for each logical address l. The exception list L[l] defines a partitioning on the
nodes of the version tree T : nodes belonging to the same partition have the same physical
address for logical address l. An exception is a pair (v, p) where v is a node in T and p is the
corresponding physical address. Every node v′ belonging to the subtree rooted at v and for
which there is no exception on the path between v′ and v belongs to the same partition as v.

It is required that in L[l] a physical address occurs at most once.1 Therefore L[l] subdivides
T in k + 1 partitions. Chunks belonging to a partition of size one are called unique, whereas
chunks in partitions of size greater than one are called shared. Due to the partitioning induced
by an exception list, version inheritance is achieved (cf. Figure 1).

The following operations need to be supported.

1. Create snapshot of origin

2. Create snapshot of snapshot

3. Read from snapshot

4. Delete snapshot

5. Write to origin

6. Write to snapshot
1Suppose that (v1, .), (v2, .) ∈ L[l]. L[l] would contain redundant exceptions if either v2 belongs to the

subtree of v1 or vice versa. If the same physical chunks occurs in two different unrelated parts of T this would
introduce inconsistency.

4

v1
[a,b]

(a) There are no snap-
shots. Exception list:
L[l1] = {(v1, a)} and
L[l2] = {(v1, b)}

v1

v2 [a,d]

[a,b]

(b) A write is performed
to the second chunk,
thus v1 becomes a snap-
shot. Exception list:
L[l1] = {(v2, a)} and
L[l2] = {(v1, b), (v2, d)}

v1

v2

v3
[c, b]

[a,d]

[a,b]

(c) A write to the first
chunk of snapshot v1

is performed, creating
a new snapshot v3.
Exception list: L[l1] =
{(v2, a), (v3, c)} and
L[l2] = {(v1, b), (v2, d)}

v1

v2

v4v3
[a, e][c, b]

[a,d]

[a,b]

(d) A write to the
second chunk of snap-
shot v1 is performed,
creating a new snapshot
v4. Exception list:
L[l1] = {(v2, a), (v3, c)}
and L[l2] =
{(v1, b), (v2, d), (v4, e)}

Figure 1: An example of the described concepts, there are two logical chunks per version.
Shared chunks are italic, whereas non-shared chunks are bold.

In the subsequent sections the operations are described together with their running time. In
the running time, v denotes the number of nodes in T , e denotes the maximal number of
exceptions for any logical address and l denotes the number of logical chunks. It holds that
e = O(v), as there can be at most v exceptions for any logical address.

Chunks reside in two different stores, namely the snapshot store and the origin store. The
origin store contains only the chunks used in the origin, whereas the snapshot store contains
the chunks used in the snapshot.

We start by defining a node.

Definition 1 A node v ∈ T is defined as

1. v.id
The version label of v

2. v.depth
The depth of v

3. v.parent
The parent of v. Note that in case v is the root then v.parent = nil

4. v.children
A list of children of v, may be nil

5. v.ancestors
A list of ancestors of v, may be nil

Definition 2 The partial function f maps a tag to a node in T , whereas the partial function
g maps a node to a tag.

5

3.1 Create snapshot of origin

Let r be the root node of T . Upon creation of snapshot of r, a child node r′ of r is created
containing no exceptions. If r had a child, then this child is redirected to r′.

Algorithm 1: CreateOriginSnapshot(T)

Let r be the root node of T1

Create a new node r′2

if |r.children| = 1 then3

Let v be the child of r4

r′.children← v5

v.parent← r′6

foreach node v′ in the subtree rooted at v do7

v′.ancestors← v′.ancestors ∪ r′8

v′.depth← v′.depth + 19

r.children← r′10

r′.parent← r11

r′.depth← 112

In Algorithm 1 the pseudo code is given. The running time of CreateOriginSnapshot is
dominated by the update of all the ancestor lists of the nodes in T and thus requires O(v)
time.

3.2 Create snapshot of snapshot

Let v be the node for which a snapshot is created. Note that v is not the root of T . A new
child v′ of v is created. The exception lists are not altered, therefore v′ does not define new
exceptions.

Algorithm 2: CreateSnapshot(T ,v)
Input: A node v ∈ T
Create a new node v′1

v.children← v.children ∪ v′2

v′.ancestors← v′.ancestors ∪ v3

v′.parent← v4

v′.depth← v.depth + 15

In Algorithm 2 the pseudo code is given. Clearly CreateSnapshot requires O(1) time.

3.3 Read from snapshot

In this operation, for a given snapshot tag t and logical address l, we need to find the cor-
responding physical address. This is done by scanning the exception list. Let v be the node
corresponding to tag t. The goal is to find the lowest ancestral node v′ such that (v′, .) ∈ L[l].

6

Algorithm 3: FindException(T ,v,l)
Input: A node v ∈ T and a logical address l
Result: An exception that defines the corresponding physical for logical address l
depth← −∞1

v′′ ← nil2

p← nil3

foreach exception (v′, p′) ∈ L[l] do4

if v′ ∈ v.ancestors and v′.depth > depth then5

depth← v′.depth6

v′′ ← v′7

p← p′8

return (v′′, p)9

Algorithm 4: ReadFromSnapshot(T ,t,l)
Input: A snapshot tag t and a logical address l
Result: A physical address
v ← f(t)1

(v′, p)← FindException(T , v, l)2

return p3

The pseudo code is given in Algorithm 4. This operation can be implemented in O(e) time,
provided that the membership test in Line 5 (in Algorithm 3) can be done in constant time
(e.g. by using a hash table).

3.4 Delete snapshot

The case of deleting a snapshot that is a leaf is trivial. The same holds for deleting a
snapshot with only one child: its exceptions can be passed on to its child (called collapsing).
The case of a node with more than one child requires some work. The naive solution would
be to propagate all its exceptions to its children. This, however, can result in more space
consumption after a deletion, which of course is unacceptable. A straightforward solution is
to postpone the deletion and hide the node in question. This corresponds to turning the node
into a so called ghost node. A ghost node has a version tag but no snapshot tag, therefore it
is not visible from the outside. For a ghost node the following important invariant holds.

Invariant 3 Every ghost has at least two children.

The question that now arises is if the number of ghosts in a version tree is bounded in terms
of the number of snapshots in that tree. When doing the following observation, it’s not hard
to see that this is indeed the case.

Observation 4 A leaf can never bep a ghost. Indeed, if a ghost is a leaf it is superfluous
and has no right to exist.

7

The following lemma now follows.

Lemma 5 Let n be the number of snapshots. In the worst case the number of ghost is n−1.

Proof. Due to Observation 4, in the worst case we have a version tree with only snapshots in
the leaves. Let n be the number of leaves. We now want to bound the number of inner nodes.
Invariant 3 enforces that a ghost must have at least two children. So in the worst-case each
ghost node has exactly two children. Therefore the version tree is a binary tree with n leaves
and thus has n− 1 inner nodes being ghosts. �

An exception (v, p) can become superfluous if none of the non-ghost nodes in the subtree
rooted at v inherit that exception. Superfluous exceptions waste storage and increase the
running time of the operations. So we do not want them, therefore the following invariant is
defined.

Invariant 6 For an exception (v, p) it holds that there is a non-ghost node v′ in the subtree
rooted at v having no exception on p, i.e. v′ inherits exception (v, p).

Invariant 6 can be violated by the operations: write to snapshot and delete snapshot. Let v
be the node on which one of the two operations is performed and let l be the logical address
that due to its alteration/deletion may violate the invariant. For restoring the invariant the
following procedure is defined.

Algorithm 5: MaintainExceptionInvariant(T ,v,l)
Input: A node v ∈ T and a logical address l
(v′, p)← FindException(v, l)1

if v′ is a ghost node then2

Let V be the set of non-ghost nodes in the subtree rooted at v′3

if there is no exception (w, q) ∈ L[l] occurring in V then4

L[l]← L[l]− (v′, p) ; /* exception (v′, p) is superfluous */5

In Algorithm 5 first the exception (v′, p)—defining the physical address of logical address l
of node v—is found in O(e) time. If v′ is not a ghost, then the found exception is certainly
not superfluous and the invariant is not violated. If v′ is a ghost, it is checked, in O(v) time,
whether the invariant still holds2. If not the exception is deleted. So the total running time
of MaintainExceptionInvariant is O(v).

In Algorithm 6 the three cases previously mentioned are given in pseudo code. Let v be the
node to be deleted. The case where v has only one child is handled by Algorithm 7. Note
that due to the deletion of v, the parent u of v may end up having only one child. If u were
to be a ghost node then u must be collapsed. The running time of Collapse is O(v · l).3
The same running time can be deduced for DeleteSnapshot.

2Again we assume that membership testing can be done in O(1) time.
3Actually it is O(e · l + v)

8

Algorithm 6: DeleteSnapshot(T , t)
Input: A snapshot tag t
v ← f(t)1

Let u be the parent of v2

if |v.children| = 0 then3

Make v a ghost, remove f(g(v)) and also remove g(v)4

foreach logical address l do5

/* before v goes to heaven it must make peace with its ancestors */
MaintainExceptionInvariant(T , v, l)6

u.children← u.children \ v7

Delete v8

else if |v.children| = 1 then9

Make v a ghost, remove f(g(v)) and also remove g(v)10

Collapse(T , v)11

else12

Make v a ghost, remove f(g(v)) and also remove g(v)13

if |u.children| = 1 and u is a ghost then14

/* by Invariant 3 u must be removed */
Collapse(T , u)15

Algorithm 7: Collapse(T , v)
Input: A ghost node v having only one child
Let u, w be the parent and child of v respectively1

foreach logical address l do2

(x, p)←FindException(T , w, l)3

if x = v then4

/* (x, p) is defined at node v but not overruled in node w, so it
must be relabeled */

L[l]← (L[l] \ (v, p)) ∪ (w, p)5

u.children← (u.children \ v) ∪ w6

w.parent← u7

Delete v8

Fix depths and ancestor lists by performing a tree traversal on the subtree rooted at w9

3.5 Write to snapshot

Writing to a snapshot is problematic due to the inheritance of exceptions. Suppose for instance
that our version tree is as in Figure 1(d). Now suppose that we want to write to the second
chunk of v1, say that p becomes the new physical address of this chunk. As a consequence,
L[l2] is updated and no longer contains (v1, b). This however would invalidate v4, as now the
second chunk of this node also has physical address p. As a remedy, v is turned into a ghost
node is added that preserves the exceptions that v initially had. Subsequently, a new child
node v′ of v is created, see Figure 2). The snapshot tag that corresponded initially to v is
remapped to v′. Also, a new exception (v′, p) is added to L[l2]. Note that in case the node

9

written to is a leaf then no ghost node is introduced. Observe that the node that is turned
into a ghost has at least two children. Therefore Invariant 3 is not violated. The pseudo code
is given in Algorithm 8. It can be seen that the running of this procedure is O(v).

v

vkv1 . . .

(a) Node v is
about to be
written to

v′

vkv . . .v1

(b) A new ghost node v′

is introduced

Figure 2: Introduction of a ghost, note that the ghost node v′ is grayed out because it is not
accessible via a snapshot tag.

Algorithm 8: WriteSnapshot(T ,t,l)
Input: A snapshot tag t, a logical address l
Let p be a free physical chunk in the which the data is written to1

v ← f(t)2

if |v.children| > 0 then3

Create a new child node v′ of v4

v′.ancestors = v.ancestors ∪ v5

v′.depth = v.depth + 16

L[l]← L[l] + (v′, p)7

Remap f(t) to v′ and unmap g(v) and g(v′) to t8

Make v a ghost9

MaintainExceptionInvariant(T , v, l)10

else11

if (v, .) ∈ L[l] then12

L[l]← L[l] \ (v, .)13

L[l]← L[l] ∪ (v, p)14

3.6 Write to origin

Let l be the logical chunk that is written to and let r be the root of T . By definition we have
(r, p) ∈ L[l]. There are three cases to be distinguished.

1. r has no children

2. r has one child v and v occurs in L[l]

3. r has one child v and v does not occur in L[l]

10

In the first two cases nothing has to be done, except writing the data to physical address
p. For the last case a new chunk with physical address p′ is allocated in the snapshot store.
Subsequently the data at p is copied to p′ and an exception (v, p′) is added to L[l]. Finally, the
data is written to p. Note that this corresponds to the copy-on-write paradigm, mentioned
in Section 2.

Algorithm 9: WriteOrigin(T ,l)
Input: A logical address l
Let r be the root of T if |v.children| = 0 then1

F2

ind (r, p) ∈ L[l]3

v ← f(t)4

if |v.children| = 0 then5

Write data to p6

else7

Let v be the child of r8

if (v, .) ∈ L[l] then9

Write data to p10

else11

Allocate a new chunk p′ in the snapshot store12

Copy the data in p to p′13

L[l]← L[l] ∪ (v, p′)14

Write the data to p15

In Algorithm 9 the pseudo code is given. It can be observed that the running time is O(e).

4 Discussion and Conclusion

An overview of the running times of the operations is given in Table 1.

Operation Algorithm Running time
CreateOriginSnapshot (see Algorithm 1) O(v)
CreateSnapshot (see Algorithm 2) O(1)
ReadFromSnapshot (see Algorithm 4) O(e)
DeleteFromSnapshot (see Algorithm 6) O(vl)
WriteSnapshot (see Algorithm 8) O(v)
WriteOrigin (see Algorithm 9) O(e)

Table 1: Operations with running times

Somehow Philips managed to implement CreateSnapshot in O(v) time [Phi08a, Phi08b].
The claim by Philips that DeleteFromSnapshot runs in O(v) is wrong. Apparently Philips
based this claim on his test implementation that supports only one logical chunk (i.e. l = 1).
Philips also claims that his ReadFromSnapshot operation runs in O(e) time. Unfortu-
nately, this is not correct as Philips decided to postpone fixing the ancestor lists of nodes

11

invalidated during a delete to this operation. Therefore in the worst case, in his implementa-
tion this operation takes O(v) time.4

A statement is made in [Phi08a] about maintaining Invariant 6 in O(e) time. As as conse-
quence according to Philips both writing to and deleting a snapshot would be possible in O(e)
time. This corollary is not true, as deleting a node v results in invalid depth and ancestor
attributes in the nodes of the subtree rooted at v. Fixing these requires O(v) time.5

In this report we took a step back from the actual implementation and looked at the versioned
pointers technique on a more abstract level. We presented a formal definition of the concepts
used. Furthermore, we defined the operations as simple as possible and proved their correct-
ness. In retrospect, the operations do not have to be as complex as Philips’ describes in his
notes. Also the extensive case analysis done by Philips in various operations unnecessarily
complicates things.

References

[Gar06] Neeta Garimella. Understanding and exploiting snapshot technology for data pro-
tection, part 1: Snapshot technology overview. 2006.

[Phi07] Daniel Philips. Zumastor linux storage server. In Proceedings of the Linux Sympo-
sium, pages 135–144, 2007.

[Phi08a] Daniel Philips. Improved versioned pointer algorithms. 2008. [Online; accessed
11-April-2009].

[Phi08b] Daniel Philips. Versioned pointers: a new method of representing snapshots. 2008.
[Online; accessed 11-April-2009].

[Wik09] Wikipedia. Snapshot (computer storage) — wikipedia, the free encyclopedia, 2009.
[Online; accessed 21-March-2009].

4In lookup chunk a traversal to the root node is performed in case the node to be read has been
invalidated.[Phi08a]

5In Philips’ fuzzy test code this corresponds to the function invalidate path, invoked in promote child

which is in turn invoked in snapshot delete.[Phi08a]

12

	Introduction
	Preliminaries
	Versioned pointers
	Create snapshot of origin
	Create snapshot of snapshot
	Read from snapshot
	Delete snapshot
	Write to snapshot
	Write to origin

	Discussion and Conclusion

